# 二分

二分查找(英语:binary search),也称折半搜索(英语:half-interval search)、对数搜索(英语:logarithmic search),是用来在一个有序数组中查找某一元素的算法。

# 工作原理

以在一个升序数组中查找一个数为例。

它每次考察数组当前部分的中间元素,如果中间元素刚好是要找的,就结束搜索过程;如果中间元素小于所查找的值,那么左侧的只会更小,不会有所查找的元素,只需到右侧查找;如果中间元素大于所查找的值同理,只需到左侧查找。

# 性质

# 时间复杂度

二分查找的最优时间复杂度为 O(1)O(1)

二分查找的平均时间复杂度和最坏时间复杂度均为O(logn)O(logn) 。因为在二分搜索过程中,算法每次都把查询的区间减半,所以对于一个长度为n的数组,至多会进行 O(logn)O(logn)次查找。

# 空间复杂度

迭代版本的二分查找的空间复杂度为 O(1)O(1)

递归(无尾调用消除)版本的二分查找的空间复杂度为 O(logn)O(logn)

# 最大值最小化

注意,这里的有序是广义的有序,如果一个数组中的左侧或者右侧都满足某一种条件,而另一侧都不满足这种条件,也可以看作是一种有序(如果把满足条件看做 ,不满足看做 ,至少对于这个条件的这一维度是有序的)。换言之,二分搜索法可以用来查找满足某种条件的最大(最小)的值。

要求满足某种条件的最大值的最小可能情况(最大值最小化),首先的想法是从小到大枚举这个作为答案的「最大值」,然后去判断是否合法。若答案单调,就可以使用二分搜索法来更快地找到答案。因此,要想使用二分搜索法来解这种「最大值最小化」的题目,需要满足以下三个条件:

  1. 答案在一个固定区间内;
  2. 可能查找一个符合条件的值不是很容易,但是要求能比较容易地判断某个值是否是符合条件的;
  3. 可行解对于区间满足一定的单调性。换言之,如果 是符合条件的,那么有 或者 也符合条件。(这样下来就满足了上面提到的单调性)

当然,最小值最大化是同理的。

# 二分答案

解题的时候往往会考虑枚举答案然后检验枚举的值是否正确。若满足单调性,则满足使用二分法的条件。把这里的枚举换成二分,就变成了“二分答案”。

# 三分法

# 简介

三分法可以用来查找凸/凹函数的最大/小值。

画一下图好理解一些(图待补)

  • 如果 lmidrmid 在最大(小)值的同一侧:由于单调性,一定是二者中较大(小)的那个离最值近一些,较远的那个点对应的区间不可能包含最值,所以可以舍弃。
  • 如果在两侧:由于最值在二者中间,我们舍弃两侧的一个区间后,也不会影响最值,所以可以舍弃。
更新时间: 5/5/2023, 11:19:52 AM